ON THE C-16 HYDROXYL CONFIGURATION OF PROTOPRIMULAGENIN A AND PRIMULAGENIN A

Isao Kitagawa, Masayuki Yoshikawa, and Itiro Yosioka Faculty of Pharmaceutical Sciences, Osaka University

Toyonaka, Osaka, Japan

(Received in Japan 17 November 1973; received in UK for publication 28 December 1973)

Recently, Segal and Taube reported¹⁾ that the 16-OH configuration of quillaic acid(1) should be revised from \propto to β on the basis of the diacetonide(2c) formation of its tetraol derivative (2) and as a result suggested that the 16-OH configuration of the following Δ^{12} -oleanene triterpenoids should be revised from α to β (albigenic acid, cyclamiretin, primulagenin A(3), and echinocystic acid) and from β to α (cochalic acid, gummosogenin, longispinogenin(9), maniladiol, chichipegenin, and myrtillogenic acid). In the structure elucidation of these triterpenoids, 3 and 9 have functioned as the key compounds of both groups respectively.

Since the $16 \propto -0H$ of protoprimulagenin A(8), a genuine sapogenol of the root of <u>Primula sie-boldi</u> E. Morren, was determined on the basis of its ready conversion with acid to $\mathfrak{Z}^{(2)}$, the above report has prompted us to re-investigate the 16-0H configuration concerned. This paper deals with the PMR evidence taking advantage of the solvent shift which supports the previous assignment rather than the claim by Segal and Taube.

In order to re-investigate the stereochemical correlation of $140 \times -CH_3$ and 16-0H of the Δ^{12} -oleanenes in question, the PMR study utilizing the d₅-pyridine induced solvent effect on some

 Δ^{12} -oleanene derivatives including $4 \sim 7_{\rm el}(160'-0{\rm H})$ being rigorously established $^{4c,d,e)}$ has been carried out. As shown in Table, in the presence of $160'-0{\rm H}$, $140'-C{\rm H}_3$ is observed markedly deshielded in d_5 -pyridine ($\Delta = \sim 0.4$ ppm), while $140'-C{\rm H}_3$ of a compound having $160'-0{\rm Ac}$, $16\beta'-0{\rm H}$, $16\beta'-0{\rm H}$, $16\beta'-0{\rm Ac}$, or no substituent at C-16 appears at the ordinary position. Therefore, the 1,3-diaxial correlation of $140'-C{\rm H}_3$ and $16'-0{\rm H}$ in 2 and 3 is reconfirmed, thus proving correctness of the previous assignments of $160'-0{\rm H}$ in $\frac{1}{2}$ and $\frac{8}{5}$, $16\beta'-0{\rm H}$ in $\frac{9}{2}$ and other related triterpenoids. If-epi-Protoprimulagenin A($\frac{8}{5}$), prepared from a 16-keto derivative of $\frac{8}{5}$ by Na-EtOH reduction, is readily converted with acid to $\frac{9}{5}$ quantitatively. Taking into consideration of slightly deformed but rigid conformation of the D-ring in $\frac{8}{5} \sim \frac{8}{5}$ due to the presence of $13\beta', 28$ -oxide ring², the 16-H signal patterns in $\frac{8}{5} \sim \frac{8}{5}$ are in good accord with the respective assignments.

Next, the diacetonide(2c) prepared by the method(2,2-dimethoxypropane-acetone-p.TsOH) of Segal and Taube¹⁾ has been examined. It has been found that 3 also yields a similarly labile 16,28-acetonide(3c) by the same method but much less effectively under the milder conditions($CuSO_4$ -acetone, p.TsOH-acetone). It should be noted here that the 16,28-acetonide was shown to be formed even in the 16 \propto -OH compounds under the strong reaction conditions⁶⁾. As shown in Table, the coupling patterns of 16-H in 3c and 3d reveal the deformed D-ring conformation(concomitant E-ring deformation being participated as discussed in the acetyl migration of $3a^{7}$). On the other hand, in the compounds having the ordinary D-ring chair conformation(vid. 5c), the signals due to 16β -H are observed as a broad singlet($W\frac{f}{2} = 7 \sim 9$ Hz) while 16α -H in 2g as a doublet of doublet as anticipated.

Although several 16β -OH compounds(e.g. myrtillogenic acid^{8a)} and 2^{8b}) were reported not to form the 16,28-acetonide, 2 has been noticed in our hands to be readily converted under the mild conditions to its acetonide, which is quite labile and readily reconverted to 2 during the isolation procedure. It is therefore concluded that the 16,28-acetonide formation could not be a criterion for the determination of 16-OH configuration. Furthermore, the recent synthesis of 3^{9} also involves in the synthetic pathway the chemical support of 16 α -OH in 3.

The authors are grateful to Dr. H. Minato of Shionogi Res. Lab. for the gifts of $\frac{1}{24}$ and $\frac{9}{2}$.

REFERENCES

1) R. Segal and A. Taube, Tetrahedron, 29, 675 (1973).

- 2) I. Kitagawa, A. Matsuda, and I. Yosioka, Chem. Pharm. Bull. (Tokyo), 20, 2226 (1972).
- a) J. Karliner and C. Djerassi, <u>J. Org. Chem.</u>, <u>31</u>, 1945 (1966).
 b) B. Tursch, R. Savoir, R. Ottinger, and G. Chiurdoglu, <u>Tetrahedron Letters</u>, <u>1967</u>, 539.
 c) S. Ito, M. Kodama, and M. Sunagawa, <u>Tetrahedron Letters</u>, <u>1967</u>, 3989.
 d) H. T. Cheung and D. G. Williamson, <u>Tetrahedron</u>, <u>1967</u>, 3989.

R ¹ R ²	R ³		$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$				$g: R^1 = R^2 = OH, R^3 = CH_2OH, R^4 = H$ $ga: R^1 = R^2 = OAc, R^3 = CH_2OAc, R^4 = H$		
			$\frac{90}{8c^* \cdot r^1}$	= UAC, $K =$ = OH. $R^2 = 4$	u-uac, β	^{1−±} 10 ⁴	$e': R^1 = R'$	⁴ = OH, R	² = H, R ³ = CH ₂ OI
			8d*: R ¹	= 0.1, R = F = 0Ac. R ² =	β-0Ac.α	(-н			
_		R ¹	 R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	ref.
	1 L	он	СНО	СН3	ОН	СООН	н	н	
	la.	ОН	СНО	CH3	он	соосн _з	н	н	1)
	2	OH	сн ₂ он	СНЗ	он	сн ₂ он	н	н	1)
	2a	ос (сн ₃))2-OCH2	CH3	ОН	сн ₂ он	н	н	*
	2 <u>b</u>	0C (CH ₃)) ₂ -0CH ₂	CH ₃	0Ac	CH ₂ OAc	н	н	*
_	2 <u>ç</u>	OC (CH ₃)	2-OCH2	СН3	ос(сн ₃)	2-OCH2	Н	н	1)
	3	OH	СН3	CH3	OH	Сн ₂ Он	н	н	2)
	Ja	OAc	CH ₃	CH3	ОН	CH ₂ OAc	н	н	2)
	<u>3</u> b	0Ac	СНЗ	CH ₃	OAc	CH ₂ OAc	н	H	*
	<u>3</u> c	он	СНЗ	CH 3	ос (СH3)	-0CH2	н	н	*
	3d	OAc	CH3	CH3	OC (CH3)	-OCH2	н	н	*
	<u>4</u>	он	СНЗ	СНЗ	он	сн ₂ он	OH	н	4c)
	4a	ОН	^{СН} 3	CH ₃	0Ac	сн ₂ он	ОН	H	*
	5~	ОН	СНЗ	СН 3	ОН	сн ₂ он	он	ОН	4c)
	5 <u>a</u>	OAc	СНЗ	CH3	ОН	CH ₂ OAc	OAc	OAc	4c)
	5Ъ	0Ac	CH ₃	CH3	0Ac	CH ₂ OAc	0Ac	0Ac	4c)
	5 <u>c</u>	0Ac	СНЗ	СНЗ	ОН	Сн ₂ 0(Сн ₃)	2-0	0Ac	4c)
	6a	0Ac	CH2OAc	CH ₃	он	CH ₂ OAc	OAc	OAc	4c)
	7a	0Ac	CH3	CH_OAc	ОН	CH_OAc	ОН, ОД	Ac	4d)

* Experimental details of the new compounds will be published elsewhere.

25,119 (1969).e) S. Ito, M. Kodama, M. Sunagawa, T. Oba, and H. Hikino, <u>Tetrahedron Letters</u>, 1969, 2905.

a) S. Ito, M. Kodama, and M. Konoike, <u>Tetrahedron Letters</u>, <u>1967</u>, 591. b) S. Ito and T. Ogino, <u>Tetrahedron Letters</u>, <u>1967</u>, 1127. c) I. Yosioka, T. Nishimura, A. Matsuda, and I. Kitagawa, <u>Chem. Pharm. Bull.(Tokyo)</u>, <u>18</u>, 1610, 1621 (1970); <u>19</u>, 1186 (1971). d) I. Yosioka, A. Matsuda, K. Imai, T. Nishimura, and I. Kitagawa, <u>Chem. Pharm. Bull.(Tokyo)</u>, <u>19</u>, 1200 (1971). e) I. Yosioka, R. Takeda, A. Matsuda, and I. Kitagawa, <u>Chem. Pharm. Bull.(Tokyo)</u>, <u>20</u>, 1237 (1972).

		140X-CH	(90 MH	z,δ) [*]		16-H (δ, J in Hz)*			
_	1)00	21 ₄ 11)	CDC13	iii)d ₅ - pyridine	∠ (111-1) and/or (111-11)	i)CC1 ₄	11)CDC13	iii)d ₅ -pyridine	
1a 2		1.3	36	1.72	+0.36		4.50(br.s)	4.94(br.s) 4.56(br.s)	
2a ≁		1.4 (or 1.3	i0 : 14)	1.80	+0.40 (or +0.46)		4.00(br.s)	4.62(br.s)	
<u>2</u> Þ		1.2	.9				5.19(br.s)		
2¢	1.30 ~1.2	5 12							
<u>2</u>				1.76				4.53(br.s)	
3a 3b	1.30 1.24) 	1 1	1.73 1.39	+0.37 +0.15	3.93(br.s) 5.02(br.s)		4.35(br.s) 5.43(br.s)	
<u>J</u> c	1.30 (or 1.25) ;)				3.53(d.d,4.	5,12.5)		
39	1.31 (or 1.26] (or]	L.48 L.35)		3.54(d.d,4.	5,12.5)	3.77(d.d,4,12)	
4 48		1.3	1 5 1	L.80 L.47	+0.12		5.71(br.s)	6.17(br.s)	
5 5a	1.40	1.4	3 1	L.73 L.76	+0.36 +0.33	4.13(br.s)	4.20(br.s)	4.91(br.s) 4.48(br.s)	
<u>5</u> b	1.27	1.3	0 1	L.45	+0.18	5.03(br.s)	5.24(br.s)	5.62(br.s)	
<u>5</u> c	1.39 (or 1.33	1.4	1 1	L.74 +0	.35(or +0.41) +0.33	4.74(br.s)	4.82(br.s)	5.13(br.s)	
<u>6</u> a	1.41	1.4	3 1	1.76	+0.35 +0.33	4.14(br.s)	4.19(br.s)	4.43(br.s)	
<u>7a</u>		1.4	21	.78	+0.36		4.20(br.s)	4.54(br.s)	
8 8a	1.16	1.2	1 1	.51 .54	+0.38	3.92(d,4.5)	3.98(d,5.4)	5.91(d,4.5) 5.98(d,4.5)	
8b 8c		1.1	5 ^{**} 1	40			5.05(d,5.4)	1	
8d 2		1.1	9 ** 1	32		· · · · · · · · · · · · · · · · · · ·	5.38(d.d,6.	3,10)	
9a 10	1.28		1	. 36	+0.08	5.43(d.d,5.4	4,11)	5.83(d.d,5.4,12.6)	

* Blank column: not measured due to less solubility, or unclear due to overlapping. ** These lowest methyl signals might be due to 8β -CH₃ rather than 14α -CH₃.

5) a) K. Tori and K. Aono, <u>Ann. Rep. Shionogi Res. Lab.</u>, <u>14</u>, 136 (1964). b) P. V. Demarco, E. Farkas, D. Doddrell, B. L. Mylari, and E. Wenkert, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 5480 (1968).

6) T. Kubota, F. Toami, and H. Hinoh, <u>Tetrahedron</u>, <u>23</u>, 3333 (1967).

7) O. D. Hensens and K. G. Lewis, <u>Tetrahedron Letters</u>, <u>1968</u>, 3213.

8) a) C. Djerassi and H. G. Monsimer, <u>J. Am. Chem. Soc.</u>, <u>79</u>, 2901 (1957). b) A. Sandoval, A. Manjarrez, P. R. Leeming, G. H. Thomas, and C. Djerassi, <u>J. Am. Chem. Soc.</u>, <u>79</u>, 4468 (1957).

9) J. Allen, R. B. Boar, J. F. McGhie, and D. H. R. Barton, J. Chem. Soc. Perkin I, 1972, 2994.